

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics				
QUALIFICATION CODE:	07BSOC; 07BAMS	LEVEL:	5	
COURSE CODE:	LIA502S	COURSE CODE:	LINEAR ALGEBRA 1	
SESSION:	JUNE 2022	PAPER:	THEORY	
DURATION:	3 HOURS	MARKS:	100	

FII	RST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	DR. DSI IIYAMBO	
MODERATOR:	DR. N CHERE	

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

Consider the vectors $\mathbf{p} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{q} = \mathbf{i} - 3\mathbf{j} + 12\mathbf{k}$

- a) Find the unit vector in the direction of p. [3]
- b) Find the angle (in degrees) between p and q. Give you answer correct to 1 d.p. [8]

Question 2

Consider the following matrices.

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 4 \\ 3 & -1 \\ -2 & 2 \end{pmatrix}, \quad \text{and } D = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}.$$

- a) Given that C = AB, determine the element c_{32} . [3]
- b) Find $(3A)^T$. [3]
- c) Is DB defined? If yes, then find it, and hence calculate tr(DB). [7]

Question 3

Let $A = (a_{ij})$ be an $n \times n$ matrix.

- a) When do we say that A is a symmetric matrix? [2]
- b) Prove that $A + A^T$ is a symmetric matrix. [5]
- c) Prove that if A is an invertible symmetric matrix, then A^{-1} is also symmetric. [6]

Question 4

Consider the matrix $A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & 0 & -5 \\ 1 & 7 & 2 \end{pmatrix}$.

- a) Use the Cofactor expansion method to evaluate the determinant of A. [7]
- b) Is A invertible? If it is, find A^{-1} . [14]
- c) Find det $(3(2A)^{-1})$. [6]

Question 5

Use the *Gaussian elimination method* to find the solution of the following system of linear equations, if it exists.

$$x_1 + 3x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 4$$
$$3x_1 + 4x_2 + 2x_3 = -1$$

[10]

[6]

Question 6

- a) Prove that a vector space cannot have more than one zero vector.
- b) Let M_{nn} be a vector space whose elements are all the $n \times n$ matrices, with the usual addition and scalar multiplication for matrices. Determine whether the following set is a subspace of M_{nn} .

$$S = \{ A \in M_{nn} \, | \, tr(A) = 0 \}$$

[11]

c) Prove or disprove that if S and T are subspaces of a vector space V, then $S \cap T$ is also a subspace of V.